Direct oral anticoagulants versus vitamin K antagonists in left ventricular thrombi

A systematic review and meta-analysis

Drs. Navneet Natt, Faith Michael & Mohammed Shurrab

Disclosure of Affiliations, Financial and In-Kind Support

Affiliations

I have no relationships with for-profit or not-for-profit organizations.

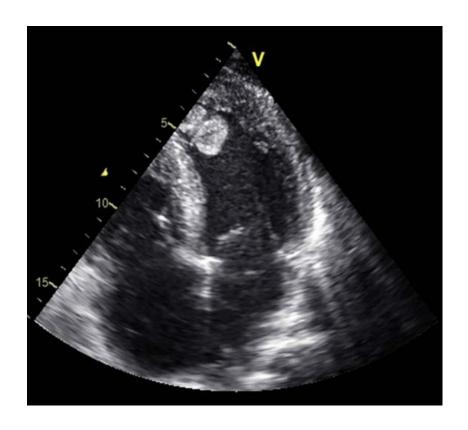
Financial Support

This session has not received financial or in-kind support.

Outline

- 1. Background
- 2. Research Objectives
- 3. Methodology
- 4. Results
- 5. Strengths & Limitations
- 6. Conclusions

BACKGROUND



Northern Ontario
School of Medicine
École de médecine
du Nord de l'Ontario

About Left Ventricular (LV) Thrombi

- Occur in conditions where left ventricular systolic function is impaired
 - E.g. post-anterior myocardial infarction, dilated cardiomyopathy

- Associated with thromboembolic events
 - E.g. stroke, peripheral arterial emboli

Management of Left Ventricular Thrombi

European Society of Cardiology (2012)

"Mural thrombi, once diagnosed, require oral anticoagulant therapy with vitamin K antagonists for up to 6 months"

American College of Cardiology (2013)

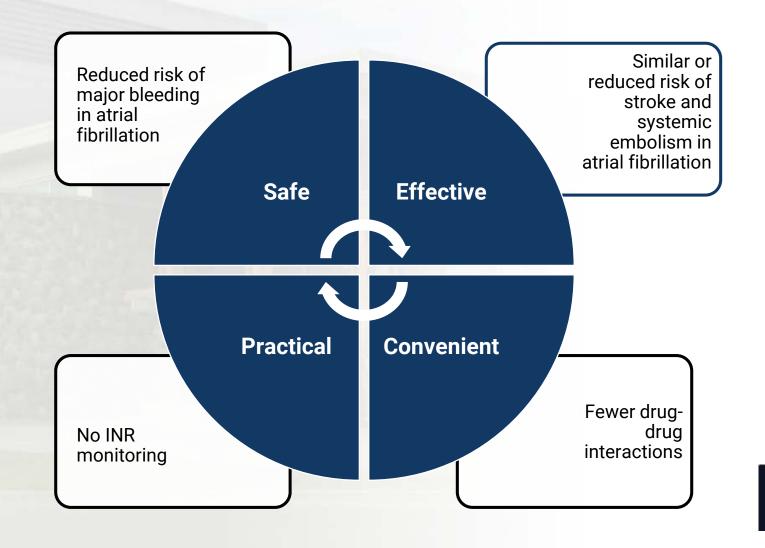
"Anticoagulant therapy with a vitamin K antagonist is reasonable for patients with STEMI and asymptomatic LV mural thrombi"

Limitations of Current Consensus Guidelines

No recent updates to the guidelines

Recommendations based on low quality of evidence; primarily expert opinion

Current Recommendations for DOACs


American Heart Association/American Stroke Association (2014)

"In those with LV thrombus who are intolerant to VKA therapy, treatment with LMWH, dabigatran, rivaroxaban, or apixaban for 3 months may be considered as an alternative to VKA therapy"

(Class 2B recommendation, Level of Evidence C)

Benefits of DOACs vs. VKAs

Evidence for DOACs in LV Thrombi

 Many small retrospective studies have demonstrated that DOACs and VKAs have similar outcomes in treatment of LVT

- E.g. Robinson et al. 2020:
 - Multicenter retrospective cohort study
 - n = 121 DOAC; n = 236 warfarin
 - Increased stroke and systemic embolism with DOACs (HR 2.88; 95% CI 1.22-6.80; p = 0.02)

Rationale for Our Study

- Conflicting data exists regarding the safety & efficacy of DOACs for the treatment of LV thrombi
- No recent guidelines to recommend the use of DOACs for this indication
- DOACs are a well-established alternative to VKAs in the treatment of other thromboembolic phenomenon, but conflicting literature for LV thrombi to date

Research Objectives

To compare the safety and efficacy of DOACs to VKAs in the management of LV thrombi with respect to:

- Stroke
- Bleeding
- Systemic embolism (SE)
- Stroke or systemic embolism (SSE)
- Mortality
- LV thrombus resolution

Primary Outcomes

Secondary Outcomes

RESEARCH METHODS

Methodology

Databases

PubMed, Embase, CENTRAL, Scopus, and OpenGrey

Inclusion Criteria

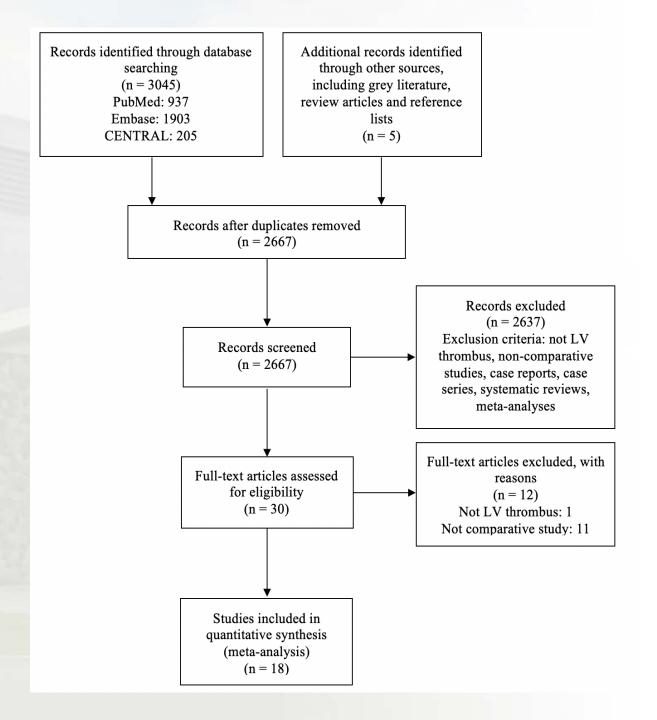
- Comparative study of DOACs to VKAs in LV thrombi
- Must report on: stroke, bleeding, SE, SSE, mortality or LV thrombus resolution

Exclusion Criteria

Case reports, case series, non-comparative trials & review articles

Statistical Analysis

Random-effects model used to report odds ratios

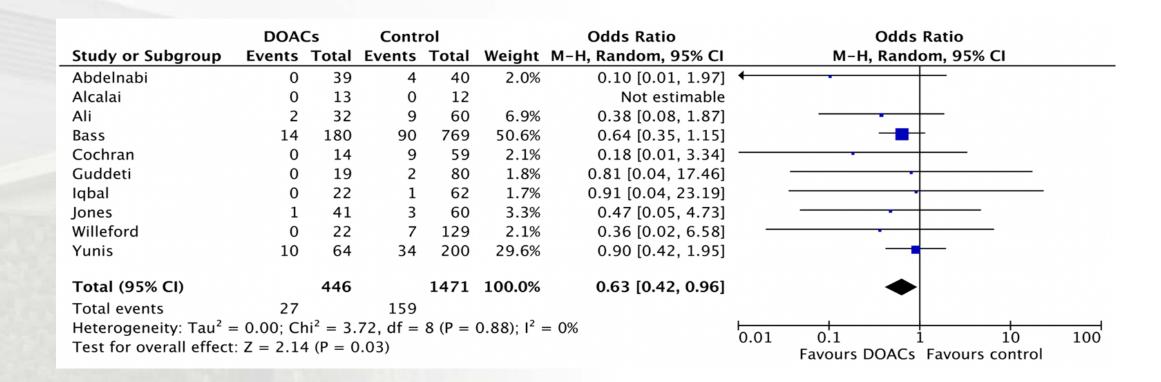


RESULTS

Northern Ontario School of Medicine École de médecine du Nord de l'Ontario P·∇∩ 2° 2° U\$> L™PP· ∆ ∆° dò ∆°

Included Studies

18 studies (including 8 abstracts)

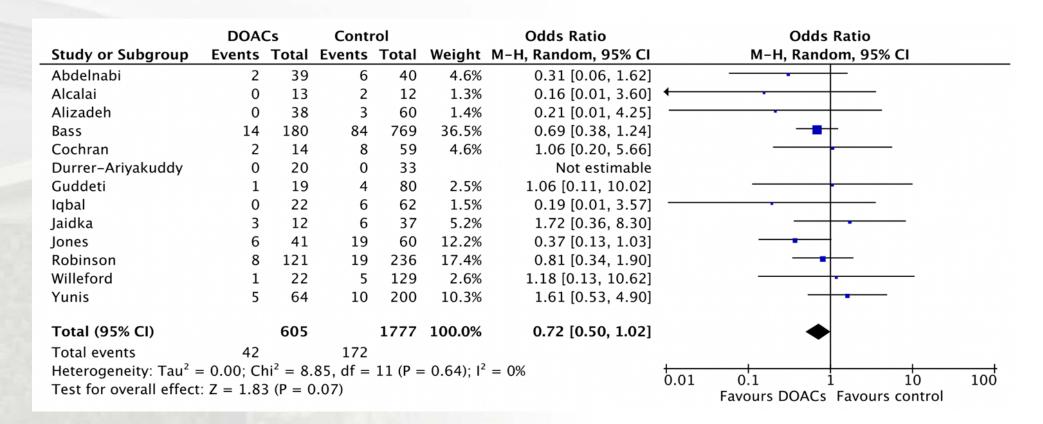

- 14 retrospective cohorts
- 2 prospective cohorts
- 2 preliminary RCTs

2666 patients

- 674 on DOAC, 1992 on VKA
- Mean age 49-63 years
- Significant cardiovascular comorbidities
- Most LV thrombi due to acute MI or ischemic cardiomyopathy

Stroke

6.0% in DOAC vs. 10.8% in VKA (OR 0.63, 95% CI 0.42-0.96, p = 0.03)


Sensitivity analysis

OR 0.57, 95% CI 0.35-0.95, p = 0.03

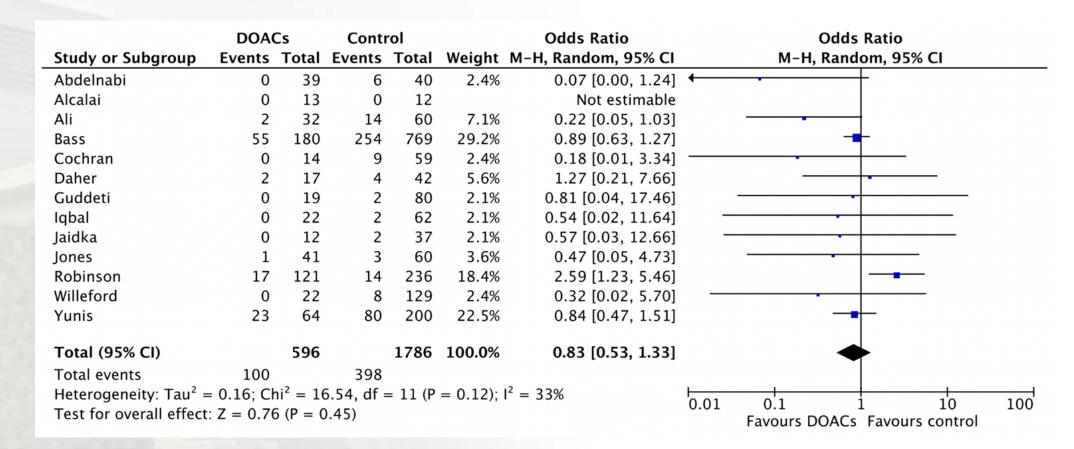
Bleeding

7.0% in DOAC vs. 9.7% in VKA (OR 0.72, 95% CI 0.50-1.02, p = 0.07)

Sensitivity analysis

OR 0.67, 95% CI 0.45-1.00, p = 0.05

Systemic Embolism


	DOACs Control					Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Events Total		M-H, Random, 95% CI		M-H, Random, 95% CI	
Abdelnabi	0	39	2	40	4.2%	0.19 [0.01, 4.19]	\leftarrow	· ·	
Alcalai	0	13	0	12		Not estimable			
Ali	0	32	5	60	4.7%	0.16 [0.01, 2.90]	\leftarrow	· · · · · ·	
Iqbal	0	22	1	62	3.8%	0.91 [0.04, 23.19]		-	
Willeford	0	22	1	129	3.8%	1.90 [0.08, 48.21]		-	
Yunis	13	64	46	200	83.4%	0.85 [0.43, 1.71]		-	
Total (95% CI)		192		503	100.0%	0.77 [0.41, 1.44]		•	
Total events	13		55						
Heterogeneity: Tau ² Test for overall effec				4 (P =	0.67); I ² =	= 0%	0.01	0.1 1 10 Favours DOACs Favours control	100

6.7% in DOAC vs. 10.7% in VKA

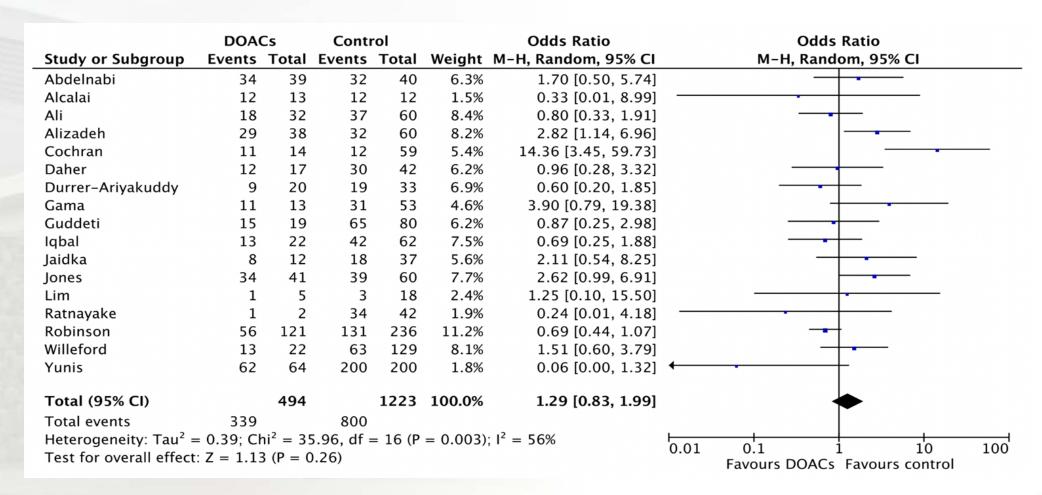
OR 0.77, 95% CI 0.41-1.44, p = 0.41

Stroke or Systemic Embolism

16.8% in DOAC vs. 22.2% in VKA

OR 0.83, 95% CI 0.53-1.33, p = 0.45

Mortality


	DOA	Cs	Cont	Control		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Random, 95% CI	
Alcalai	0	13	0	12		Not estimable			
Cochran	1	14	2	59	3.2%	2.19 [0.18, 26.05]		-	
Durrer-Ariyakuddy	1	20	2	33	3.3%	0.82 [0.07, 9.62]		-	
Iqbal	3	22	6	62	9.1%	1.47 [0.34, 6.48]		- •	
Robinson	14	121	32	236	44.3%	0.83 [0.43, 1.63]			
Yunis	13	64	38	200	40.1%	1.09 [0.54, 2.20]		—	
Total (95% CI)		254		602	100.0%	1.01 [0.64, 1.57]		•	
Total events	32		80						
Heterogeneity: Tau ² =	= 0.00; Cł	$ni^2 = 1.$.01, df =	4 (P =	0.91); $I^2 =$	= 0%	0.01	01 1 10	100
Test for overall effect	z = 0.03	B (P = 0)	0.98)				0.01	0.1 1 10 Favours DOACs Favours control	100

12.8% in DOAC vs. 13.3% in VKA

OR 1.01, 95% CI 0.64-1.57, p = 0.98

LV Thrombus Resolution

69.3% in DOAC vs. 69.6% in VKA

OR 1.29, 95% CI 0.83-1.99, p = 0.26

Northern Ontario

Summary of Results

Outcome	Weighted a	average (%)	OR (95% CI)	P-value	l² (%)
	DOAC	VKA			
Stroke	6.0	10.8	0.63 (0.42-0.96)	0.03	0
Bleeding	7.0	9.7	0.72 (0.50-1.02)	0.07	0
Systemic embolism	6.7	10.7	0.77 (0.41-1.44)	0.41	0
Stroke or systemic embolism	16.8	22.2	0.83 (0.53-1.33)	0.45	33
Mortality	12.8	13.3	1.01 (0.64-1.57)	0.98	0
LV thrombus resolution	69.3	69.6	1.29 (0.83-1.99)	0.26	56

STRENGTHS & LIMITATIONS

Strengths

Largest meta-analysis to date

Inclusion of RCT data

Examined stroke as individual outcome

2666 patients across 18 primary studies (>600 on DOAC)

First meta-analysis to include data from two RCTs

First meta-analysis to examine stroke, SE & SSE

Limitations

Primary Study Design

- Most included studies
 - were cohorts

Variability in Definitions

- Outcome definitions varied
 - across studies

CONCLUSIONS

Northern Ontario School of Medicine École de médecine du Nord de l'Ontario P·∇∩ \(\doldrightarrow\) \(\doldrightarrow\) \(\doldrightarrow\) \(\doldrightarrow\) \(\doldrightarrow\)

Summary of Evidence

- 1. At this time, there is no concrete recommendation for/against use of DOACs in treatment of LV thrombi
- 2. DOACs and VKAs are comparable in the odds of systemic embolism, stroke or systemic embolism, mortality and LV thrombus resolution
- 3. DOACs are associated with a statistically significant reduction in the odds of stroke without an increase in bleeding
- 4. In the appropriate clinical context, it may be reasonable to use DOACs for treatment of LV thrombi after shared decision-making with the patient
- 5. Large, high-quality RCTs are required to corroborate our findings and inform future guidelines

THANK YOU Questions?

SUPPLEMENTARY TABLES

TABLES Table 1: Summary of study characteristics

Author	Study design	G	roups	Etiology of LV thrombus	Average follow-up	Outcome definitions		
		VKA (n)	DOAC ^a (n)		(months)			
Abdelnabi (2020) ¹⁷	RCT	40 (all warfarin)	39 (all rivaroxaban 20 mg daily)	Ischemic cardiomyopathy (78.5%) Idiopathic (20.3%) Peripartum (1.2%)	6	Stroke: Any type of stroke SE: Any type of systemic embolism Bleeding: Major bleeding according to ISTH LV thrombus resolution: Determined by TTE		
Alcalai (2020) ¹⁸	RCT	12 (all warfarin)	13 (all apixaban 5 mg BID)	Acute MI (100%)	3	Bleeding: Major bleeding LV thrombus resolution: Determined by TTE		
Ali (2020) ²¹	Retrospective cohort	60 (all warfarin)	32 (rivaroxaban = 18, apixaban = 13, dabigatran = 1)	Ischemic cardiomyopathy (58%) Non-ischemic cardiomyopathy (23%) Acute MI (15%) Takotsubo cardiomyopathy (3%)	12	Not defined		

Alizadeh (2019) ¹⁹	Prospective cohort	60 (VKA not specified)	38 (rivaroxaban = 22, apixaban = 14, edoxaban = 2)	Acute MI (100%)	21.6	Bleeding: Major bleeding, including intracranial bleed, major gastrointestinal bleed and bleed requiring hospital admission LV thrombus resolution: Determined by echocardiography or CMR
Bass (2021) ²²	Retrospective cohort	769 (all warfarin)	180 (rivaroxaban = 77, apixaban = 79, dabigatran = 29)	Not specified	3	Stroke: Thromboembolic stroke Bleeding: GUSTO criteria
Cochran (2020) ⁷	Retrospective cohort	59 (all warfarin)	14 (DOAC not specified)	Acute MI (48%)	12	Stroke: Clinically documented Bleeding: Minimal, minor and major bleeding according to TIMI LV thrombus resolution: Determined by TTE with contrast
Daher (2020) ²³	Retrospective cohort	42 (warfarin = 14, acenocoumarol = 12, fluindione = 16)	17 (rivaroxaban = 4, apixaban = 12, dabigatran = 1)	Acute MI or ischemic cardiomyopathy (37.3%)	3	LV thrombus resolution: Determined by TTE
Durrer- Ariyakuddy (2019) ²⁴	Retrospective cohort	33 (VKA not specified)	20 (DOAC not specified)	Acute MI (47%) Non-ischemic cardiomyopathy (40%) Ischemic heart disease (13%)	20	Bleeding: Major bleeding LV thrombus resolution: Determined by echocardiography

Gama (2019) ²⁵	Retrospective cohort	53 (all warfarin)	13 (DOAC not specified)	All patients post- acute MI or heart failure with reduced ejection fraction	Unknown	LV thrombus resolution: Determined by echocardiography and complemented by CMR when needed
Guddeti (2020) ⁸	Retrospective cohort	80 (all warfarin)	19 (rivaroxaban = 2, apixaban = 15, dabigatran = 2)	Acute MI (20.2%) Ischemic cardiomyopathy (58.6%)	12	Stroke: Confirmed by neuroimaging Bleeding: Life-threatening bleed requiring hospitalization, reduction in hemoglobin by ≥ 2 g/dL, or bleed requiring endoscopic evaluation LV thrombus resolution: Determined by echocardiogram
Iqbal (2020) ⁹	Retrospective cohort	62 (all warfarin)	22 (rivaroxaban 20 mg daily = 13, apixaban 5 mg BID = 8, dabigatran 150 mg BID = 1)	Ischemic cardiomyopathy (86.9%) Dilated cardiomyopathy (4.76%) Hypertrophic cardiomyopathy (3.57%) Myocarditis (2.4%) Unknown (2.4%)	36 ± 17	Bleeding: Any episode of documented bleeding, including presentation to the emergency department, hospitalization, or described in subsequent correspondence LV thrombus resolution: Determined by TTE or CMR
Jaidka (2018) ²⁶	Retrospective cohort	37 (all warfarin)	12 (DOAC not specified)	Acute MI (100%)	6	LV thrombus resolution: Determined by echocardiography

			1			
Jones (2020) ²⁰	Prospective cohort	e 60 (all warfarin)	41 (rivaroxaban = 24, apixaban = 15, edoxaban = 2)	Acute MI (100%)	26.4 (median)	Bleeding: BARC criteria LV thrombus resolution: Determined by TTE or CMR
Lim (20)	Retrospection cohort	ve 18 (all warfarin)	5 (rivaroxaban = 2, dabigatran = 3)	Unknown	Unknown	LV thrombus resolution: Determined by echocardiography
Ratnaya (2020) ²⁸	ke Retrospection cohort	ve 42 (all warfarin)	2 (all dabigatran)	Acute MI (100%)	6	LV thrombus resolution: Determined by TTE
Robinso (2020) ¹⁰	n Retrospecti cohort	ive 236	121 (apixaban, rivaroxaban and dabigatran)	Unknown	12	Stroke: Clinically documented stroke SE: Clinically documented systemic embolism Bleeding: Event requiring cessation of anticoagulation LV thrombus resolution: Determined by TTE
Willefor (2020) ²⁹	d Retrospecticohort	ive 129 (all warfarin)	22 [rivaroxaban = 18 (15 mg BID followed by 20 mg BID = 11, 20 mg daily = 6, 15 mg daily = 1), apixaban = 4 (2.5 mg BID = 1, 5 mg BID = 3)]	Unknown	8.5	Stroke: Ischemic or hemorrhagic stroke Bleeding: Hemorrhagic stroke and bleeding requiring transfusion LV thrombus resolution: Determined by TTE
Yunis (2020) ³⁰	Retrospecti	ive 200 (all warfarin)	64 (DOAC not specified)	Unknown	24	Not defined

Table S1: Baseline characteristics of patients

Author (year)	Group	Age	Male	Hyper- tension	Diabetes Mellitus	Dyslipi- demia	CAD	HF	LVEF	PVD	Atrial Fibrilla tion	Prior Stroke/ TIA	Prior SE	Concurrent Antiplatelet Therapy (%)		
														ASA	P2Y12 Inhibitor	DAPT
Abdelnabi (2020) ¹⁷	DOAC (n=39)	49.1 ±12.3	21 (53.8)	23 (59)	23 (59)	22 (56.4)	-	-	36.1 ±6.1	-	-	1 (2.6)	-	-	-	-
	VKA (n=40)	50.1 ±12.9	24 (60)	19 (47.5)	19 (47.5)	16 (40)	-	-	37.0 ±5.3	-	-	2 (5)	-	-	-	-
Ali (2020) ²¹	DOAC (n=32)	59.2 ±11.9	26 (81.3)	-	12 (37.5)	-	-	25 (78.1)	23.0 ±9.4	2 (6.3)	9 (28.1)	-	-	65.45	17.3	-
	VKA (n=60)	58 ±16.3	49 (81.7)	-	18 (30)	-	-	45 (75)	23.2 ±11.2	14 (23.3)	18 (30)	-	-	65.45		-
Bass (2021) ²²	DOAC (n=180)	63.4 ±16.7	125 (69.4)	-	-	-	77 (42.8)	123 (68.3)	-	-	111 (61.7)	31 (17.2)	-	46.7		
	VKA (n=769)	61.6 ±15.3	545 (70.9)	-	-	-	443 (57.6)	573 (74.5)	-	-	352 (45.8)	158 (20.6)	-		55.7	
Cochran (2020) ⁷	DOAC (n=14)	51.5 (39- 73) ^a	11 (78.6)	-	7 (47)	-	7 (53)	10 (73)	-	-	-	-	-	-	-	-
	VKA (n=59)	62 (34- 84) ^a	45 (76.3)	-	23 (39)	-	36 (61)	48 (81)	-	-	-	-	-	-	-	-
Daher (2020) ²³	DOAC (n=17)	57 ±14	14 (82.4)	10 (59)	2 (12)	5 (29.4)	-	-	41±8	-	-	-	-	58.8	64.7	-

	VKA (n=42)	61 ±13	35 (83)	17 (40.5)	9 (21.4)	18 (43)	-	-	36±12	-	-	-	-	66.7	40.5	-
Guddeti (2020) ⁸	DOAC (n=19)	60.7 ±13.1	15 (79)	15 (79)	3 (15.8)	-	11 (57.9)	19 (100)	25	-	4 (21.1)	-	1 (11.1)	57.9	15.8	-
	VKA (n=80)	61.3 ±12.2	55 (68.8)	61 (76.3)	34 (43)	-	53 (66.3)	77 (96.3)	25	-	18 (22.5)	-	5 (6.25)	67.5	15	-
Iqbal (2020)9	DOAC (n=22)	62±1 3	20 (91)	9 (41)	19 (86)	4 (18)	-	21 (95)	31±13	4 (18)	3 (14)	1 (4.5)	1 (4.6)	41	-	20
	VKA (n=62)	62±1 4	55 (89)	18 (29)	19 (31)	9 (15)	-	60 (94)	35±13	2 (3)	3 (5)	9 (14.5)	2 (3.2)	65	-	38
Jaidka (2018) ²⁶	DOAC (n=12)	57.2 ±9.3	9 (75)	2 (16.7)	1 (8.3)	2 (16.7)	0 (0)	-	36.7 ±10.1	-	-	0 (0)	-	75	100	-
	VKA (n=37)	61.3 ±12.1	28 (75.7)	18 (48.6)	7 (18.9)	13 (35.1)	3 (8.1)	-	20 ±20.7	-	-	4 (10.8)	-	89.9	100	-
Jones (2020) ²⁰	DOAC (n=41)	58.7 ±14.2	33 (80.4)	23 (60.5)	7 (18.4)	19 (50)	21 (55.3)	-	33.5 ±10	1 (2.6)	-	-	-	-	-	68.3
	VKA (n=60)	60.8 ±14.3	51 (85)	22 (36.4)	10 (16.7)	19 (31.7)	22 (36.7)	-	35.4 ±9	1 (1.7)	-	-	-	-	-	70
Robinson (2020) ¹⁰	DOAC (n=121)	58.1 ±14.9	94 (77.7)	86 (71.1)	36 (29.8)	71 (58.7)	-	-	27.7 ±13.8	-	30 (24.8)	-	25 (20.7)	46.3	9.1	8.3
	VKA (n=236)	58.2 ±15.1	170 (72)	177 (75)	92 (39)	126 (53.4)	-	-	28.2 ±12.4	-	45 (19.1)	-	38 (16.1)	46.2	5.1	18.2
Willeford (2020) ²⁹	DOAC (n=22)	54 (48- 64) ^b	17 (77.3)	8 (36.4)	4 (18.2)	-	15 (68.2)	19 (86.4)	-	4 (18.2)	3 (13.6)	1 (4.5)	-	22.7	13.6	-
	VKA (n=129)	56 (49- 65. <u>5)</u> .	104 (80.6)	54 (41.9)	37 (28.7)	-	68 (52.7)	110 (85.3)	-	9(7)	24 (18.6)	12 (9.3)	-	54.3	27.9	-