Staying Strong Through Chemo

Does electrical stimulation protect skeletal muscle from

Doxorubicin toxicity?

Meghan McCue

Ph.D. Candidate, Biomolecular Sciences Dr. David MacLean I have no conflicts or competing interests to declare.

Funding for this study was provided by Dr. MacLean's René Guilbeault Research Award

What is Doxorubicin?

Effective anti-cancer tool

Risks and Benefits

Non-specific + Dose Limited

Toxic to healthy tissues

What tissues are most effected?

What tissues are most effected?

Skeletal Muscle

40% of human body

Required for basic function + metabolism

Indicator of prognosis

Dox-induced myotoxicity

Oxidative stress

Mitochondrial dysfunction

Muscle breakdown

Impaired glucose metabolism

Weakness, exercise intolerance

To add to basic toxicity... Skeletal muscle is an active site of Dox sequestration

How do we protect muscle?

Stimulates glucose metabolism

Exercise

Prevents atrophy, stimulates muscle growth

Reduces intramuscular accumulation?

Exercise is HARD! Especially during aggressive chemotherapy

Is there a reasonable alternative?

Electrical Stimulation

Passive "exercise" of muscle

Isolated effects of muscle activity

Viable option for bed-ridden or extremely ill patients

Do various electrical stimulation protocols impact Doxorubicin accumulation and toxicity in skeletal muscle?

Study Aims

• Use electrical stimulation to see if muscle contraction induces Dox efflux

Study Aims

• Use electrical stimulation to see if muscle contraction induces Dox efflux

 Does electrical stimulation impact glucose metabolism and muscle breakdown pathways?

Study Outline

4.5 mg/kg IP Dox

Wait 24 hours

Hindlimb stimulation

Stimulation on left leg ONLY

Sciatic Nerve Stimulus

1 Hz 3 Hz

(L) 5, 15, 30 minutes

True control group: NO Doxorubicin, NO stimulation (n=6)

Intra-individual control: harvested muscles from the right leg prior to stimulation

Tissue Harvest

Gastrocneumis, Soleus, Plantaris

Mixed Venous Blood

Assays

Aim 1: Doxorubicin accumulation

Determine the quantity of Doxorubicin and

Doxorubicinol in muscle and plasma using HPLC

Preliminary Results

Intramuscular Dox/Doxol

No apparent differences (pre vs. post stimulation)

Variability rat to rat

Exercise paradox?

Plasma Dox/Doxol

No apparent differences between groups (to be expected)

Variability rat to rat

Assays

Aim 2: Muscle Integrity Investigate genes and markers that govern energy metabolism, muscle breakdown

Preliminary Results

Glucose Metabolism

No apparent differences across all groups for Glut-4 and AMPK or Rac1 mRNA expression

Need to evaluate transporter activity and location

Muscle Breakdown

Amino Acid profile, Nitric Oxide content, muscle atrophy pathways under investigation

Summary

No acute benefit of muscle contraction on Dox accumulation or **glucose metabolism genes**

Didn't see what we had hoped - but gained valuable in sight

Still a ton of analysis left to go!

Change timeline

Next Steps?

Comparative Exercise

Clinical Model

Que stions?

Thank you for listening!

Dickinson, J.M., D'Lugos, A.C., Mahmood, T.N., Ormsby, J.C., Salvo, L., Dedmon, W.L., Patel, S.H., Katsma, M.S., Mookadam, F., Gonzales, R.J., Hale, T.M., Carroll, C.C., Angadi, S.S., 2017. Exercise Protects Skeletal Muscle during Chronic Doxorubicin Administration. Med. Sci. Sports Exerc. 49, 2394–2403. https://doi.org/10.1249/MSS.0000000000001395

Fabris, S., MacLean, D.A., 2015. Skeletal Muscle an Active Compartment in the Sequestering and Metabolism of Doxorubicin Chemotherapy. PLoS One 10, e0139070. https://doi.org/10.1371/journal.pone.0139070

Gilliam, L.A.A., Fisher-Wellman, K.H., Lin, C. Te, Maples, J.M., Cathey, B.L., Neufer, P.D., 2013. The anticancer agent doxorubicin disrupts mitochondrial energy metabolism and redox balance in skeletal muscle. Free Radic. Biol. Med. 65, 988–996. https://doi.org/10.1016/j.freeradbiomed.2013.08.191

Hayward, R., Hydock, D., Gibson, N., Greufe, S., Bredahl, E., Parry, T., 2013. Tissue retention of doxorubicin and its effects on cardiac, smooth, and skeletal muscle function. J. Physiol. Biochem. 69, 177–187. https://doi.org/10.1007/s13105-012-0200-0

Hinkley, J.M., Morton, A.B., Ichinoseki-Sekine, N., Huertas, A.M., Smuder, A.J., 2019. Exercise Training Prevents Doxorubicin-induced Mitochondrial Dysfunction of the Liver. Med. Sci. Sports Exerc. 51, 1106–1115. https://doi.org/10.1249/MSS.000000000001887

Park, S.S., Park, H.S., Jeong, H., Kwak, H.B., No, M.H., Heo, J.W., Yoo, S.Z., Kim, T.W., 2019. Treadmill exercise ameliorates chemotherapy-induced muscle weakness and central fatigue by enhancing mitochondrial function and inhibiting apoptosis. Int. Neurourol. J. 23, S32–S39. https://doi.org/10.5213/inj.1938046.023

Powers, S.K., Duarte, J.A., Le Nguyen, B., Hyatt, H., 2019. Endurance exercise protects skeletal muscle against both doxorubicin-induced and inactivity-induced muscle wasting. Pflugers Arch. Eur. J. Physiol. 471, 441–453. https://doi.org/10.1007/s00424-018-2227-8 Smuder, A.J., 2019. Exercise stimulates beneficial adaptations to diminish doxorubicin-induced cellular toxicity. Am. J. Physiol. Integr. Comp. Physiol. 317, R662–R672. https://doi.org/10.1152/ajpregu.00161.2019

Smuder, A.J., Kavazis, A.N., Min, K., Powers, S.K., 2011. Exercise protects against doxorubicin-induced oxidative stress and proteolysis in skeletal muscle. J. Appl. Physiol. 110, 935–942. https://doi.org/10.1152/japplphysiol.00677.2010

Stevers, M., Fabris, S., MacLean, D.A., 2018. Acute whole-body exercise increased the availability of Doxorubicin in the plasma post-injection, in: 5th Int Congr Exerc Sport Scie Mov. p. 113.